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EXECUTIVE SUMMARY 

Autonomous vehicles (AVs) at varying market penetration rates will change traffic flow 

and highway performance. At AV market penetration rates of between 0 percent and 100 

percent, human-driven vehicles (HVs) will interact with AVs. However, little is known about 

how HVs interact with AVs. Using the Oregon State University Driving Simulator, this study 

measured HV headways when drivers followed an AV and integrated those data into a multi-

agent simulation to quantify new highway travel time and flow predictions at varying AV market 

penetration levels. This study also collected galvanic skin response data to quantify drivers’ 

levels of stress when presented with a hard-braking AV and HV. The driving simulator 

experiment was successfully completed by 36 participants. The results of this study showed that 

drivers’ levels of stress were 70 percent higher in hard braking scenarios involving HVs versus 

AVs. Additionally, drivers over the age of 34.5 were found to give AVs 2 percent more headway 

than HVs, while younger drivers gave AVs 18 percent less headway than HVs. Thirty-six 

scenarios were tested in the multi-agent simulation using results from the driving simulator. 

Given the driving simulator results, average travel times were found to increase at most by 2.3 

percent, while flow was found to decrease at most by 1.3 percent. 
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CHAPTER 1. INTRODUCTION 

Autonomous vehicles (AVs) will undoubtedly have a significant impact on transportation 

networks. Many transportation agencies anticipate that AVs will see initial widespread adoption 

concentrated on highway facilities (KPMG, 2019). In response to this, significant research has 

been done to better understand how AVs will affect highway performance, especially with 

varying AV market penetration rates. However, these studies have used the same interaction 

models for human-driven vehicle (HV) to HV interactions as they have used for HV to AV 

interactions. There is evidence that human drivers treat and interact with AVs differently than 

they do HVs. Not reflecting these differences when predicting the ways AVs will affect highway 

performance under varying AV market penetration (MP) rates may reduce the accuracy of those 

predictions. 

Headway is a critical parameter in traffic microsimulation and capacity calculations 

(Pueboobpaphan, et al., 2013), and driving simulators are effective tools for measuring driver 

headway (Risto & Martens, 2014). This study used a driving simulator to better understand 

interactions between HVs and AVs in terms of driver level of stress and vehicle headway, noting 

differences between HV to HV headways and HV to AV headways. Additionally, this study 

integrated the driving simulator data set into a multi-agent simulation. The simulation tested the 

effects of new HV to AV headway values on highway travel times and flow.  
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CHAPTER 2. LITERATURE REVIEW 

There are significant challenges and knowledge gaps associated with predicting highway 

performance given the MP levels of AVs. Significant work has been published on traffic flow 

simulation with varying MP rates of AVs. However, the assumptions these studies have used to 

define AV and HV behavior have often lacked empirical justification. This literature review will 

discuss the work that has been done in predicting highway performance under varying MP levels 

of AVs, our current understanding of human driver behavior when interacting with AVs, and the 

role of driving simulators in AV research.  

2.1. Autonomous Vehicle Implementation Challenges 

Leading companies in the field of AV development, such as General Motors, Waymo 

(Google), Uber, and Baidu, have increased AV testing on public roads significantly in recent 

years (Bridgelall & Tolliver, 2020). Testing has illustrated the unique safety challenges 

associated with processing the complex movements, interactions, and predictions required to 

drive in urban areas. These challenges have been pushed into the public eye after the tragic and 

fatal collision in Tempe, Arizona, involving a pedestrian and an Uber-owned AV (CRS, 2020).  

In comparsion to urban driving, the challenges AVs face driving on highways are 

significantly less, as highway infrastructure and users tend to be more predictable (Nothdurft, et 

al., 2011). As a result of this understanding, many transportation agencies are preparing for 

widespread AV implementation on highways (KPMG, 2019). This has increased the urgency for 

research aimed at solving the set of challenges associated with AV operation on highway 

infrastructure. Table 2.1 shows an adoption of Dr. Shladover’s (University of California 

Berkeley) 2017 estimates for when AVs will be introduced into certain driving environments 

(Shladover, 2017), which align well with other predictions discussed in this literature review. 
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Table 2.1 Estimates for when different Society of Automotive Engineering (SAE) levels of AVs 
will be introduced into different driving environments (adopted from Shladover, 2017) 

 
Environment SAE Level 1 SAE Level 2 SAE Level 3 SAE Level 4 SAE Level 5 

Everywhere 2020s 2025s - - 2075s 

General Urban 2010s 2025s 2030s 2030s - 

Pedestrian Zone 2010s 2020s 2020s 2020s - 

Limited-Access 
Highway 

2010s 2010s 2020s 2025s - 

Separated 
Guideway 

2010s 2010s 2010s 2010s - 

 

While significant progress has been made in understanding how AVs will perform under 

various roadway conditions, not much is known about how HVs will interact with AVs on 

highways. Specifically, it is not fully understood how the interaction between HVs and AVs will 

affect highway safety and capacity or what can be done to mitigate any negative impacts. Work 

is being done to test the viability of dedicated lanes for AVs, which would limit interactions 

between HVs and AVs. However, the cost-to-benefit ratio of this infrastructure and policy 

strategy is still under question (ITS International, 2016). Therefore, it is imperative to understand 

the dynamics of HV to AV interactions on highways before the widespread adoption of AVs. 

2.2. Adaptive Cruise Control in Traffic Flow Research 

The exploration of how AVs will affect highway capacity began by considering the 

effects of varying MP levels of vehicles equipped with adaptive cruise control (ACC) (Cui, et al., 

2017). Studies exploring the impacts of ACC broadly found that increasing ACC MP rates 

correlated with increased highway capacity; however, there was variation in estimations of 

capacity gains. Very early papers on this topic suggested that a low ACC MP level would not 

affect traffic flow significantly (van Arem, et al., 1996) and found that while vehicles using ACC 
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always helped traffic stability, they could either positively or negatively affect highway capacity 

(Zwaneveld & van Arem, 1997). “Stability” as used in this paper refers to linear stability theory 

or flow uniformity, as described by Wilson and Ward (2011). Studies also began to justify 

parameter values such as desired time headway, finding that ACC systems were capable of 

safely maintaining time headways of less than 1.0 second (Godbole, et al., 1999). More recent 

findings on this topic have concluded that ACC could increase highway capacity between 7 

percent (Werf, et al., 2002) and 30 percent (or a 0.3 percent increase in capacity per 1 percent 

increase in MP rate) (Kesting, et al., 2010). 

2.3. Autonomous and Connected Autonomous Vehicles in Traffic Flow Research 

Like the results of research on ACC’s impacts on highway capacity, research on the 

impacts of AVs has suggested that improvements are possible but relatively small. By replicating 

the famous “ring-road” study by Dr. Yuki Sugiyama, which provided empirical evidence for the 

shockwave phenomenon (Sugiyama, et al., 2008), but replacing one HV with an AV, Cui found 

that AVs can significantly increase local traffic stability without changing HV behavior (Cui, et 

al., 2017). One microsimulation study found that improvements in traffic flow on highways 

would only be realized at AV MP rates above 70 percent. The same study recommended that 

future work develop models that consider HV to AV interactions in mixed traffic. However, the 

authors recognized that before such a model could be developed, more behavioral work would 

need to be done to understand how HVs perceive and interact with AVs. The authors also 

recognized a need to validate or calibrate their AV driver behavior model (Calvert, et al., 2017).  

As innovations in technology and communications have made the introduction of 

connected and autonomous vehicles (CAVs) more likely, traffic flow and network modeling 

research has shifted focus away from AVs and toward CAVs. The first paper to distinguish and 
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compare CAVs and AVs in a network model concluded that because CAVs have more 

information to inform driving behavior than AVs, the potential for highway capacity gains with 

increasing MP rates of CAVs would be higher than that of AVs by more than 100 percent 

(Talebpour & Mahmassani, 2016). Rios-Torres (2017) built upon this understanding by finding 

that increasing MP levels of CAVs could also reduce fuel consumption by up to 70 percent and 

reduce travel times by more than 100 percent in medium to high congestion scenarios. The study 

also found that CAVs would be highly effective in stabilizing traffic in very high congestion 

scenarios (Rios-Torres & Malikopoulos, 2017).  

2.4. Human Driver Models 

As illustrated by the studies in the previous sections, the HV driver model in many mixed 

traffic models and simulations has remained unchanged from HV driver models used in HV-only 

traffic analysis. The assumption used in these studies has been that the methods of vehicle to 

vehicle communication could be unchanged, whether for an AV to an HV or for an HV to an HV 

(Wei, et al., 2013). However, this assumption does not consider potential changes in HV driving 

behavior due to human drivers’ level of trust or perceptions of AVs. The author of this literature 

review was unable to find work that justified the parameters used in network models and 

simulations for HV to AV interactions. For example, vehicle time headways have been identified 

as a parameter critical to fundamental traffic simulation and modeling and essential for 

calculating capacity at a microscopic level (Pueboobpaphan, et al., 2013). However, this 

literature review identified that headway assumptions for HVs following AVs in traffic and 

network models have been identical to the headway assumptions for HVs following HVs. 

Studies that have explored the interaction between HVs and AVs have tended to focus on 

intersections, as the deployment of traffic control devices that are functional for both HVs and 
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AVs was identified as a factor limiting the widespread adoption of AVs as early as 2007 

(Dresner & Stone , 2007). For example, Dr. Fox developed a model to simulate the negotiation 

between HVs and AVs at an intersection with no traffic control devices by using discrete 

sequential game theory and found that the more efficient solutions correlated with a higher risk 

of collision (Fox, et al., 2018). 

2.5. Human Trust in Autonomous Vehicles 

While the public’s perceptions of AVs continue to evolve with time, recent literature can 

still give a general sense of human drivers’ trust in AVs. Five surveys conducted in the United 

States and Canada found that the general population consistently had considerable doubt in the 

ability of AVs to positively affect transportation. Most survey respondents reported distrust in 

AVs’ ability to handle unique or edge-case driving scenarios. Those respondents also preferred 

AVs to have an option for the human operator to take control when they desired. Furthermore, 

this study found that younger respondents consistently held more trust in AVs than older 

respondents, suggesting a future shift in public attitudes toward technology as younger 

generations age (Hedlund, 2017). An Australian survey on the topic of trust in AVs found similar 

results, with a significant majority of respondents expressing concerns related to perceived 

safety, trust, and control issues. Males, younger respondents, and respondents with higher levels 

of education in this survey were also found to hold more favorable views of AVs (Pettigrew, et 

al., 2019).  

Empirical studies have also investigated trust in AVs. One 2019 study found that human 

drivers’ level of trust did not change between AVs that were programmed to imitate human 

driving behavior and AVs programmed to convey the impression of communicating with other 

AVs and the surrounding infrastructure. This suggested that human drivers’ level of trust in AVs 
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is pre-determined and not influenced by AV driving behavior. Additionally, the study found that 

human drivers trusted AVs more with increased interaction time (Oliveira, et al., 2019).  

AVs are significantly more expensive than standard vehicles commercially available 

today and are only being tested in a few municipalities across the U.S. (Brownell & Kornhauser, 

2014). Therefore, most studies evaluating human interactions with AVs cannot be conducted at 

any reasonable scale. Instead, other means of data collection have had to be utilized, such as 

small-scale vehicles. One study tested humans’ intended driving responses against multiple 

variations of driving maneuvers performed by small-scale AVs. Results showed that HV driving 

behaviors and perceptions of AVs were strongly related to the AVs’ driving maneuvers 

(Zimmermann & Wettach, 2016). This suggested that AVs can viscerally communicate 

information to HVs through certain driving maneuvers—the opposite of the findings by Oliveira 

et al. (2019), as discussed in the previous paragraph. 

2.6. Driving Simulators in Autonomous Vehicle Research 

Driving simulators are established tools for researching human factors and driver 

behavior at a nanoscopic level (Fisher, et al., 2011). Recently, driving simulators have been used 

to evaluate driver behavior when operating an AV. For example, one study used a driving 

simulator programmed to simulate automated driving at Society of Automotive Engineers (SA)E 

level 3 to extract participants’ levels of trust and perceptions regarding AVs (Buckley, et al., 

2018). Another study used a driving simulator to observe how drivers reacted to takeover 

requests when approaching an intersection, and how proximity to the intersection and in-vehicle 

tasks affected the risk of collision with bicyclists approaching the same intersection (Fleskes & 

Hurwitz, 2019). This literature review found only one study that utilized nanoscopic observations 
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to inform a traffic simulation model in an attempt to explain the sag curve phenomenon (Miska 

& Kuwahara, 2011).  

Driving simulators are effective tools to measure headway, as driver headways in virtual 

driving simulator environments do not vary significantly from driver headways in real road 

driving (Risto & Martens, 2014). As mentioned previously, headway is a parameter critical to 

fundamental traffic modeling and simulation (Pueboobpaphan, et al., 2013).  

2.7. Research Questions 

This literature review revealed that there are significant knowledge gaps related to how 

human drivers will interact with AVs on highways. This information has the potential to change 

our understandings of how mixed traffic should be modeled and how varying MP rates of AVs 

would affect highway capacity. To address these knowledge gaps and issues, the following 

research questions were developed. 

• Research Question 1: How do drivers’ levels of stress compare in a hard-braking 

scenario when they follow an AV or an HV? 

• Research Question 2: How do drivers interpret fault from a collision with an AV or 

an HV? 

• Research Question 3: What demographic variables affect drivers’ headways when 

they follow an AV? 

• Research Question 4: How do drivers’ headways differ when they follow an AV or an 

HV? 

• Research Question 5: How do drivers’ headways when they follow an AV compare to 

headway values currently assumed in mixed traffic models? 
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• Research Question 6: Do new values for driver headway when an AV is followed 

have a significant impact on highway travel time and flow predictions for varying 

market penetration levels of AVs? 

These questions guided the methods and analysis of this study, and we sought to produce 

quantitative data to better understand the interactions between HVs and AVs. 
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CHAPTER 3. METHODS 

This study was approved by the Oregon State University (OSU) Institutional Review 

Board (Study #2019-0261). The primary experimental tools were the OSU Driving Simulator, 

used in combination with an iMotions Shimmer3 GSR+, and a custom-built, Python-based multi-

agent vehicle simulation (MAVS). 

3.1. OSU Driving Simulator 

The full-scale OSU Driving Simulator is a high-fidelity, motion-based simulator 

comprising a full 2009 Ford Fusion cab mounted above an electric pitch motion system capable 

of rotating plus or minus four degrees. The vehicle cab is mounted on the pitch motion system 

with the driver’s eye point located at the center of rotation. The pitch motion system allows for 

accurate representation of acceleration or deceleration (Swake, et al., 2013). Three liquid crystal 

on silicon projectors with a resolution of 1,400 × 1,050 are used to project a front view of 180 

degrees × 40 degrees. These front screens measure 11 feet × 7.5 feet. A digital light-processing 

projector is used to display a rear image for the driver’s center mirror. The two side mirrors have 

embedded liquid crystal displays. The update rate for all projected graphics is 60 hertz. Ambient 

sounds surrounding the vehicle and internal vehicle sounds are modeled with a surround sound 

system. 

The computational system includes a quad-core host computer running Realtime 

Technologies SimCreator Software (Version 3.2) with graphics update rates capable of 60 hertz. 

The simulator software can capture and output values for multiple kinematic performance 

measures with high fidelity. These performance measures include the position of the subject 

inside the virtual environment, velocity, and acceleration. Each of these computation components 

is controlled from the operator workstation. The driving simulator is in a room physically 
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separated from the operator workstation to prevent participants in the vehicle from being affected 

by visual or audible distractions. 

3.2. iMotions Shimmer3 GSR+ 

The Shimmer3 GSR+ measures galvanic skin response (GSR). GSR data is collected by 

two electrodes attached to two separate fingers on one hand. These electrodes detect stimuli in 

the form of changes in moisture, which increase skin conductance and change the electric flow 

between the two electrodes. Therefore, GSR data are dependent on sweat gland activity, which is 

correlated to the participant’s level of stress (Bakker, et al., 2011). The Shimmer3 GSR+ sensors 

attach to an auxiliary input, which is strapped to the participant’s wrist, as shown in figure 3.1. 

Data are wirelessly sent to a host computer running iMotions EDA/GSR Module software, which 

features data analysis tools such as automated peak detection and time synchronization with 

other experimental data. 

 
Figure 3.1 Shimmer3 GSR+ sensors (shown attached to the index and middle finger) send data 

to a host computer through the wireless transmitter (shown attached to the wrist) in real time 
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3.3. Factorial Design 

Two independent variables were selected to explore HV and AV headways—leading 

vehicle speed and leading vehicle autonomy. A 2x2 factorial design was created to explore each 

of the two independent variables of the study. Additionally, participants were exposed to two 

hard-braking scenarios: one with a leading HV (SAE level zero) and one with a leading AV 

(SAE level five). In total, participants were exposed to each of the four levels and two hard 

braking scenarios with a total of six unique scenarios (table 3.1). Scenarios presented in the same 

track were separated by 45 to 60 seconds of driving. Hard braking events included in tracks III 

and IV did not interfere with the car-following portion of each track. 

Table 3.1 Summary of the six scenarios presented in four tracks to participants 
 

Track Scenario Leading Vehicle Speed Leading Vehicle Autonomy Hard Braking 

I 
1 65 miles per hour SAE level five No 

2 45 miles per hour SAE level zero No 

II 
3 65 miles per hour SAE level zero No 

4 45 miles per hour SAE level five No 

III 5 55 miles per hour SAE level five Yes 

IV 6 55 miles per hour SAE level zero Yes 

 
The within-subject design provides the advantages of greater statistical power and 

reduced error variance associated with individual differences (Brink & Wood, 1998). However, 

one fundamental disadvantage of the within-subject design is the potential for “practice effects,” 

which as caused by practice, experience, and growing familiarity with procedures as participants 

move through the sequence of conditions. To control for practice effects, the order of the 

presentation of scenarios to participants can be randomized or counterbalanced (Girden, 1992). 
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To account for practice effects, four different track layouts representing six different scenarios 

were presented in a random order to each participant. This added flexibility and simplicity to the 

statistical analysis and the number of participants required. 

Following their experimental drives, participants were asked to respond to questions in a 

post-drive survey. The survey included questions about the participant’s level of comfort 

following SAE level five vehicles and SAE level zero vehicles. Additionally, participants were 

asked to identify fault if they were involved in one or more collisions during the experimental 

drives. 

3.4. Virtual Environment 

The virtual environment was developed by using the following software packages: 

Internet Scene Assembler (ISA), SimCreator, and GNU Image Manipulation Program (GIMP). 

The dynamic elements of the simulations were developed in ISA by using JavaScript-based 

sensors on tracks to engage position-dependent events such as hard-braking. The environment 

was designed to replicate limited-access highway conditions with speed limits between 45 mph 

and 65 mph. Roadway cross-sections consisted of two 12-foot lanes in each direction of travel.  

Pre-loaded dynamic objects from SimCreator were adjusted with GIMP to produce 

visually identifiable SAE level five vehicles. GIMP is an open-sourced image editing software 

that is capable of editing RGBA image files, the file type used to render textures of dynamic 

objects in SimCreator. The rear of SAE level five vehicles was edited to say “Self-Driving,” 

which replicated the terminology and text position of current SAE level five vehicles being 

tested on public roads by WAYMO and Uber. The edited image file is shown in figure 3.2. SAE 

level five vehicles in the simulation were programmed to have zero fluctuation in speed or lane 
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position. SAE level zero vehicles in the simulation were programmed to have continuous random 

speed fluctuations plus or minus 5 mph.  

 

Figure 3.2 Screenshot of the RGBA image file edited with GIMP to modify pre-loaded dynamic 
vehicles from SimCreator 

 

3.5. Multi-Agent Vehicle Simulation 

A MAVS is a variation of agent-based modeling and simulation (ABMS) that features 

different vehicle types (e.g., both HVs and AVs). ABMS has a bottom-up structure and can 

model heterogeneous agents to observe emergent behaviors from interactions among individual 

agents. ABMS is a popular alternative to simulating real-life situations when empirical data are 

scarce or difficult to obtain (Sanchez & Lucas, 2002), and it is especially effective at modeling 

human-involved systems because of the autonomous behavior and interactions of agents preset 

by the programmer (Bonabeau, 2002).  

An agent-based simulation was built to model traffic along a two-lane (per direction), 5-

mile highway segment. Agents in the simulation followed the Intelligent Driver Model (IDM), 

using methodologies similar to those in studies described in section 2.2 of this report. In addition 

to the IDM, agents could perform simple lane changing behavior. Because of uncertainties in 
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how AVs will be deployed over time (Chang, et al., 2015), the program had to be able to vary 

AV market penetration as an input. Both inputs to the program and hard-coded parameters are 

summarized in table 3.2.  

Table 3.2 Summary of user inputs and hard-coded parameters in the program. A user input that 
was randomly generated from a normal distribution used the user input to center the distribution. 

 
Source Variable Randomly Generated from 

Normal Distribution? 

User Input 

AV Market Penetration No 

Percentage of HV’s in Group 1 No 

Speed Limit No 

Number of Vehicles No 

Number of Iterations No 

HV to AV Headway Group 1 Yes 

HV to AV Headway Group 2 Yes 

Hard-Coded 

AV Maximum Acceleration No 

AV Comfortable Deceleration No 

AV Headway No 

AV Gap Acceptance No 

HV Maximum Acceleration Yes 

AV Comfortable Deceleration Yes 

HV Preferred Speed Yes 

HV to HV Preferred Headway Yes 

HV Gap Acceptance Yes 

 
Select parameters were randomly generated from a normal distribution for each agent in 

the simulation as a part of the Monte Carlo simulation method. More information on the Monte 

Carlo method used for this study can be found in section 4.4. Program outputs are average 

vehicle speed, average vehicle travel time, and total simulation time. Total simulation time was 

the total amount of time it took for all vehicles generated in the simulation to traverse the 5-mile 
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highway segment. The total number of vehicles in the simulation could be divided by the total 

simulation time to give average flow. All vehicles were generated simultaneously and given 2 

miles to stabilize their driving behavior before entering the 5-mile highway segment where data 

were recorded. 

The program was developed with Python and utilized a voxel simulation style. Voxels are 

like pixels but contain three dimensions of information rather than two, providing distinct 

advantages. Relevant to this project, voxels allow an agent’s movement to be simulated on a 

Cartesian plane (which requires three dimensions of information) rather than by just vectors 

(which require two dimensions of information). Furthermore, voxels are easier to transform and 

render to perform the kinematic calculations of vehicle-agents and allow the implementation of 

lane-changing behavior. However, voxel simulation styles tend to require more computational 

memory than other simulation styles (Klette & Rosenfeld, 2004). This was not an issue for this 

project, given the relatively small size of the simulated world.  

Using the developed program, three headway conditions were tested: 1) HV to AV 

headways were equal to HV to HV headways; 2) HV to AV headways were different than HV to 

HV headways; and 3) HV to AV headways varied by age group and were different from HV to 

HV headways. These three conditions will be referred to as “No Difference,” “HV2AV 

Difference,” and “HV2AV*Age Difference,” respectively, for the remainder of this report. Each 

condition was run with AV market penetration rates varying from 0 percent to 100percent, in 20 

percent increments, for both 45 mph and 65 mph speed limits. Each of these scenarios was 

iterated 100 times. In total, 36 scenarios were simulated in 3,600 iterations. 
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CHAPTER 4. RESULTS 

Driving simulator headway data, GSR data, and MAVS results were reduced and 

analyzed to answer the study’s six research questions (outlined in section 2.7). 

4.1. Participant Demographics and Post-Ride Survey Results 

Of the 39 participants, 44 percent were female, and the age of the participants ranged 

between 18 years and 69 years (𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎 = 27.4, 𝑆𝑆𝑆𝑆𝑎𝑎𝑎𝑎𝑎𝑎 = 10.9). Three participants reported 

simulator sickness and did not complete the experiment – all responses recorded from 

participants who reported simulator sickness were excluded from the analyzed data set. 

After the experimental drive, participants were asked if they would prefer AVs to drive in 

a separate lane from human drivers on highways. Thirty-eight percent of participants indicated 

that they would prefer separation. However, the way participants answered this question was not 

found to have a relationship with participants’ headways when following an AV or HV. 

Each participant was exposed to two hard braking scenarios – one when following an AV 

and one when following an HV. If the participant was involved in a collision during one or both 

hard braking scenarios, they were asked to identify who was at fault for the collision. Of the 78 

hard braking scenarios tested in this study, 10 collisions were observed (four with an HV, six 

with an AV). Half of participants in a collision with an HV placed fault on the leading vehicle, 

while all of the participants in a collision with an AV placed fault on themselves. However, the 

sample size was too small to draw a statistical conclusion. 

4.2. Galvanic Skin Response Results 

GSR measurements were reduced to GSR peaks per minute for the two hard braking 

scenarios. The analyzed data set began at the start of the lead vehicle’s deceleration and ended 

when the lead vehicle had come to a complete stop. By reducing the data to peaks per minute, the 
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natural variations between participants’ peak heights were controlled for. GSR peaks per minute 

have been used in previous transportation human factors studies (Krogmeier, et al., 2019). 

Furthermore, GSR peaks per minute is generally accepted as an indicator of level of stress in 

human factors studies (Zou & Ergan, 2019). iMotions software was used to segment, compute, 

and reduce the data set. The software developed a baseline GSR reading for each participant on 

the basis of their average response throughout the entire experimental drive. Any amplified 

response above the baseline was classified as a peak and was recorded (iMotions, 2017).  

During the experimental drive, GSR data were transmitted wirelessly from the Shimmer+ 

device attached to the participant in the driving simulator to a host computer in the control room. 

The strength of wireless connectivity could vary, with weaker wireless connections degrading 

the reliability of the data set. Fifteen data sets were removed from the analysis because of weak 

wireless connections. Figure 4.1 visualizes the two data sets of 21 participants with boxplots; 

they show that the spread of the participants’ GSR response was noticeably wider in the HV hard 

braking scenario than in the AV hard braking scenario. 

 

Figure 4.1 Boxplots showing that the spread of the participants’ GSR response was noticeably 
wider in the HV hard braking scenario than in the AV hard braking scenario 
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The 21 data sets were analyzed with a paired t-test for dependent means (also referred to 

as a repeated measures t-test) at the 95 percent confidence level. This test was a reliable choice 

for testing the difference between the two data sets because it accounts for repeated measures 

(within-subject) data (Jashami, et al., 2017). The test showed that GSR peaks per minute were 70 

percent higher in the HV hard braking scenario than in the AV hard braking scenario (p-value < 

0.01). 

4.3. Experimental Drive Results 

Linear mixed effects models (LMM) can account for errors generated from repeated 

measures, can consider fixed or random effects in its analysis, and can accommodate both 

categorical and continuous variables (Jashami, et al., 2019). Furthermore, LMMs have a low 

probability of incurring Type I errors (Jashami, et al., 2020), (Abadi, et al., 2018). Given that this 

study’s sample size exceeded the minimum required for an LMM analysis (Barlow, et al., 2019) 

and met the required distributional assumptions (Maruyama, 2008), the LMM was a strong 

candidate for the analysis of the experimental drive data set.  

Variables of roadway speed, leading vehicle type, whether the participant was involved in 

a collision, self-reported level of concern of the participant when following an AV, and age were 

included in the model as fixed effects. The participant variable was included as a random effect. 

The driver performance measures evaluated were headways when following either an AV or HV. 

Instantaneous time headways were recorded when participants followed select vehicles 

throughout the drive as intended by the experimental design. To find the value closest to the 

participant’s preferred following distance, the average following distance throughout the entire 

recorded segment could not be used. This is because the entire recorded segment included 

headway data points recorded when participants were choosing their preferred headway, which 
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were highly variable across different participants. Instead, the minimum headway value in the 

recorded segment was used, and it will be referred to as “headway” in the analysis.  

The greatest average time headway was observed when participants followed an HV with 

a 45 mph speed limit (mean = 2.8 sec, SD = 1.9 sec), while the smallest average time headway 

was observed when participants followed an HV with a 65 mph speed limit (mean = 2.3 sec, SD 

= 1.2 sec). An LMM was used to estimate the relationship between the independent variables and 

the participant’s time headway. Fisher’s least significant difference (LSD) test was run in the 

case of statistically significant effects to perform post hoc contrasts for multiple comparisons. All 

statistical analyses were performed at the 95 percent confidence level. Restricted maximum 

likelihood estimates were also used in the development of this model. Table 4.1 shows the results 

of the model. The random effect was significant (Wald Z = 3.40, p<0.001), suggesting that it was 

necessary to treat the participant as a random factor in the model. 
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Table 4.1 Mean and standard deviation of time headway (s) at the independent variable level 
 

Variable Levels Estimate DF P 

Participant Random Effect (SD) - (0.88) - <0.01* 

Constant - 2.39 35 <0.01* 

Leading Vehicle Type 
AV -0.21 105 <0.01* 

HV Base - - 

Speed Limit 
45 mph 0.2 105 <0.01* 

65 mph Base - - 

Collision 
Yes -0.99 105 <0.01* 

No Base - - 

Age 
<34.5 -0.53 105 <0.01* 

>34.5 Base - - 

Age x Leading Vehicle Type 
<34.5 AV -0.51 105 <0.01* 

>34.5 AV Base - - 

Speed Limit x Leading Vehicle Type 
45 AV -0.52 105 <0.01* 

45 HV Base - - 

Collision x Leading Vehicle Type 
Yes AV -0.2 105 <0.01* 

Yes HV Base - - 

Age x Speed Limit 

<34.5 45 mph -0.3 105 <0.01* 

>34.5 45 mph -0.1 105 <0.01* 

<34.5 65 mph -0.8 105 <0.01* 

>34.5 65 mph Base - - 

Summary Statistics     

R2 70% Observations 144 

-2Log Likelihood 402.0 Participants 36 

AIC 438.4 Observations/ 
Participant 

4 

*Significant at the 95 percent confidence level 

Both treatment factors were found to have a significant impact on headway. Regardless 

of other variables, participants following AVs maintained headways that were 9 percent smaller 

than when they followed HVs. Similarly, participants selected headways that were 8 percent 
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smaller at 45 mph speeds than at 65 mph speeds. The mean time headways for each level of 

leading vehicle type and speed limit are shown in the interaction plot presented in figure 4.2. 

 
Figure 4.2 Primary effects plot of the leading vehicle type (left) and speed limit (right) on mean 

lateral position 
 

Figure 4.3visualizes why age was categorized into two groups: below and above 34.5 

years of age. In the post-drive survey, participants were asked about the level of concern they felt 

when following an AV. A clear division was observed between participants in those two age 

groups. No participants above the age of 34.5 years self-reported being “unconcerned” when 

following an AV in the post-drive survey, whereas 38 percent of participants under the age of 

34.5 did. 
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Figure 4.3 Distribution of mean headways and age by level of concern 

 

4.4. Multi-Agent Vehicle Simulation Results 

In the multi-agent simulation, AVs in all scenarios followed a time headway of 1 second, 

while HV time headways varied by scenario. The input values shown in table 4.2 were used by 

the program to center a normal distribution from which preferred time headway values were 

randomly assigned to each HV generated in the simulation. Table 4.2 also shows the percentage 

difference between input time headway values as informed by the driving simulator data set. In 

the HV2AV*Age Difference condition, Group 1 represented drivers under the age of 34.5. 

According to 2019 data from the U.S. Census Bureau, those under the age of 34.5 make up 

approximately 45 percent of the U.S. population (U.S. Census Bureau, 2019). Therefore, Group 

1 agents made up 45 percent of all HV agents, with Group 2 agents making up the remaining 55 

percent in the HV2AV*Age Difference condition. 
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Table 4.2 Variation in HV time headway values for the three conditions modeled 
 

Condition HV Time Headway 
Group 1 

HV Time Headway 
Group 2 

Percentage of HVs in 
Group 1 

No Difference Base - 100% 

HV2AV Difference -9% - 100% 

HV2AV*Age Difference -18% +2% 45% 

 
The modeling used a Monte Carlo simulation approach to evaluate the emergent 

collective behaviors and patterns of the traffic flow along the highway segment. AV market 

penetration rates were varied from 0 to 100 percent in 20-point increments, and each scenario 

was iterated 100 times. Figure 4.4 summarizes the results of all simulations. 

 

Figure 4.4 Average travel time (left) and average flow (right) across varying AV market 
penetration rates with 45 mph speed limits (top) and 65 mph speed limits (bottom) 
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A one-way analysis of variance (ANOVA) was conducted between each of the three 

conditions modeled for each AV market penetration scenario. Separate ANOVAs tested for 

differences in average travel times and average flow. The Tukey post-hoc test was conducted on 

each ANOVA analysis to determine where exactly differences lay. Table 4.3 shows the scenarios 

that had average travel times or average flows different from their respective No Difference 

scenario at the 99 percent significance level. 

Table 4.3 Scenarios found to have different means of travel time or flow at the 99 percent 
significance level 

Measure Speed Limit AV Market 
Penetration 

Condition 
Compared 

Percent 
Difference 

Test 
Statistic 

p-Value 

Travel Time 

45 mph 40% HV2AV*Age 
Difference 

0.1% 4.88 <0.01* 

45 mph 60% HV2AV 
Difference 

2.3% 16.00 <0.01* 

45 mph 60% HV2AV*Age 
Difference 

2.2% 15.50 <0.01* 

45 mph 80% HV2AV 
Difference 

1.7% 9.35 <0.01* 

45 mph 80% HV2AV*Age 
Difference 

0.9% 5.06 <0.01* 

Flow 65 mph 40% HV2AV*Age 
Difference 

-1.3% 5.02 <0.01* 

*Significant at the 99% confidence level 
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CHAPTER 5. DISCUSSION 

This section revisits the research questions of this study and discusses how the study’s 

results answered the research questions. Recommendations, limitations, and suggested future 

work are also discussed in this section.  

5.1. Research Questions 1 and 2  

How do drivers’ level of stress compare in a hard-braking scenario when they follow an 

AV or an HV? How do drivers interpret fault from a collision with an AV or an HV? 

Driver level of stress was measured by using GSR peaks per minute and was found to be 

significantly higher in the HV hard braking scenario than in the AV hard braking scenario. On 

average, GSR peaks per minute were 70 percent higher with HVs than AVs in hard braking 

scenarios. Of four collisions observed with HVs, two participants blamed the leading HV for the 

collision and two blamed themselves. In contrast, none of the six participants who collided with 

an AV blamed the AV for the collision. Given these findings, it is possible that participants had a 

higher level of confidence in an AV’s ability to exhibit safe driving behaviors than in an HV’s 

ability. However, the sample size of driver interpretations of fault was too small to draw a 

conclusion with confidence. 

5.2. Research Question 3  

What demographic variables affect drivers’ headway when they follow an AV? 

Of the demographic information provided by participants (e.g., gender, income, race), 

age was found to be the best indicator of how a participant would perceive and interact with 

AVs. None of the participants over the age of 34.5 reported being “unconcerned” when 

following an AV, whereas 38 percent of participants under the age of 34.5 reported being 

unconcerned. In terms of following distance, age was also a strong predictor of how a participant 

would behave. In general, those over the age of 34.5 maintaned greater headways than those 
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under the age of 34.5, regardless of the vehicle type. This was consistent with what is already 

known about the impacts of age on driver headways (e.g., (Brackstone, et al., 2009)) and helped 

to validate the data set produced in this study. In comparison to their respective headways when 

following an HV, those older than 34.5 increased their headways by over 2 percent when they 

followed an AV. On the contrary, those younger than 34.5 decreased headways by over 18 

percent when they followed an AV. This finding could have substantial impacts on transportation 

planning. 

5.3. Research Questions 4 and 5  

How do drivers’ headways differ when they follow an AV or an HV? How do drivers’ 

headways when they follow an AV compare to headway values currently assumed in mixed 

traffic models? 

The results of this study showed that driver headways did differ when drivers were 

following an AV versus an HV. Regardless of any other factors, drivers gave HVs 8 percent 

more following distance than AVs. This may suggest that participants had a greater level of 

comfort or trust when following an AV, which was consistent with the findings for research 

questions 1 and 2. As discussed in the previous section, headways when an AV was followed 

could be as much as 18 percent lower than when an HV was followed, depending on the driver’s 

age. This means a standard 4-second headway would be reduced to a 3.3-second headway. If a 

driver travelled at 65 mph, a 4-second headway would be reduced nearly 60 feet, or three car 

lengths. 

5.4. Research Question 6  

Do new values for driver headway when an AV is followed have a significant impact on 

highway travel time and flow predictions for varying market penetration levels of AVs? 
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The values found for headways when drivers followed an AV without adjusting for age 

did not seem to have a statistically significant impact on highway travel times or flow 

predictions. However, adjusting headway values for age did produce statistically significant 

differences. The greatest difference, seen for average travel times on 45 mph facilities with a 60 

percent AV market penetration rate, was a 2.3 percent increase in average travel times. While the 

difference was statistically significant, nevertheless the practical meaning of this result would be 

small. At most, the calibrated HV driver model could change a 60-minute travel time prediction 

to just over 61 minutes.  

The impact could become greater as age demographics shift. If younger generations 

continue to hold the attitudes and behaviors toward AVs that were observed in this study as they 

age, and new generations exhibit similar attitudes and behaviors, then greater portions of the 

population could give AVs an average of 18 percent less headway than HVs through time. Given 

these findings, there is a clear need to fully understand how HVs interact with AVs. 

Characteristics not analyzed in this study, such as gap acceptance combined with the validated 

headway values found in this study, could have an even greater impact on travel time and flow 

predictions. 

5.5. Recommendations 

This study made it clear that there is a difference between how drivers follow HVs and 

AVs. While these differences have small impacts on highway travel times and flow, they could 

have more significant impacts on the analyses of other facility types (such as intersections) or on 

the calculation of other driver behaviors that use headway as an input variable. Therefore, the 

Highway Capacity Manual (HCM) should include lookup tables with different headway values 

based on the leading vehicle type and driver age.  
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Analyzed GSR data also suggested that drivers have a smaller physical response to hard 

braking AVs, which could increase the risk of AVs being rear-ended by human drivers. AVs 

may be more likely to exhibit hard braking behavior at intersections in states with restrictive 

yellow-light laws and in areas with high inter-modal interaction (e.g., urban areas). States should 

consider evaluating yellow-light laws and their application to AVs to maximize safety, and 

vehicle manufacturers should consider ways to communicate to following vehicles to induce a 

greater physical response behind hard braking AVs. 

The results of this study showed that younger drivers follow AVs with smaller headways 

than HVs. Given that younger drivers already tend to follow vehicles with smaller headways 

than other age groups (Brackstone, et al., 2009), this could be a potentially dangerous emergent 

behavior. Education programs and campaigns should reinforce safe following distances 

regardless of the lead vehicle type. 

5.6. Study Limitations 

This study serves as an important step in understanding the differences in ways that 

human drivers interact with and perceive AVs. It is also an important step in developing an 

effective way to integrate driving simulator data into traffic models. However, there were 

limitations to this study, which are addressed below. 

• Within-subject study designs have limitations associated with fatigue and carryover 

effects, which can degrade participant performance and compromise data validity.  

• Participants likely had not driven with SAE level 5 vehicles before. Driving behavior 

and perceptions may change with increased exposure to SAE level 5 vehicles. 

• Although efforts were made to recruit a sample of drivers like the driving population 

of the U.S., the final sample skewed slightly young. 
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• Fifteen GSR data sets were lost because of weak wireless connectivity between the 

GSR sensor and host computer. Future studies should find a way to synchronize 

SimObserver data with GSR data so that the GSR sensor and host computer can be in 

the same room during data collection. 
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CHAPTER 6. CONCLUSIONS 

Each of the six research questions was answered by this study. Drivers’ levels of stress 

were greater in hard braking scenarios involving an HV than an AV, and there was some 

evidence to suggest that drivers were more likely to blame themselves in a rear-end collision 

with an AV. In general, drivers gave AVs less headway than HVs. However, age was a 

compelling indicator of how drivers perceived an AV and how much headway they would give 

when following an AV. Older drivers followed AVs with slightly greater headways than HVs, 

while younger drivers followed AVs with significantly smaller headways than HVs. These new 

headway values could affect highway travel time and flow predictions for lower speed facilities 

at AV market penetration rates between 0 percent and 100 percent; however, the impact would 

be small. The greatest impact observed in this study was a 2.3 percent increase in average travel 

time when headway values were integrated from the driving simulator experiment. 

This study justifies the need for a better understanding of how human drivers will interact 

with AVs. Better understanding of these interactions could improve AV vehicle design and AV 

policy to increase safety for all roadway users. Calibration of human driver models that 

considered interactions with AVs would improve the accuracy of facility and network 

performance predictions for varying AV market penetration rates. The results of this study 

should be used to inform updates to the HCM. 

Building off the results of this study, immediate opportunities for future work could be 

the following: 

1. Continue building upon the multi-agent simulation to model at a network level or to 

model intersections by using the driving simulator data set produced in this study to 

inform the model. 
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2. Expand the driving simulator data set with observations of other human driver to AV 

interactions. This could include yield behavior and gap acceptance. Use the expanded 

data set to inform the expanded multi-agent simulation model mentioned above. 
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